HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor.

نویسندگان

  • Jeffrey J Kovacs
  • Patrick J M Murphy
  • Stéphanie Gaillard
  • Xuan Zhao
  • June-Tai Wu
  • Christopher V Nicchitta
  • Minoru Yoshida
  • David O Toft
  • William B Pratt
  • Tso-Pang Yao
چکیده

The molecular chaperone heat shock protein 90 (Hsp90) and its accessory cochaperones function by facilitating the structural maturation and complex assembly of client proteins, including steroid hormone receptors and selected kinases. By promoting the activity and stability of these signaling proteins, Hsp90 has emerged as a critical modulator in cell signaling. Here, we present evidence that Hsp90 chaperone activity is regulated by reversible acetylation and controlled by the deacetylase HDAC6. We show that HDAC6 functions as an Hsp90 deacetylase. Inactivation of HDAC6 leads to Hsp90 hyperacetylation, its dissociation from an essential cochaperone, p23, and a loss of chaperone activity. In HDAC6-deficient cells, Hsp90-dependent maturation of the glucocorticoid receptor (GR) is compromised, resulting in GR defective in ligand binding, nuclear translocation, and transcriptional activation. Our results identify Hsp90 as a target of HDAC6 and suggest reversible acetylation as a unique mechanism that regulates Hsp90 chaperone complex activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HDAC6 regulates glucocorticoid receptor signaling in serotonin pathways with critical impact on stress resilience.

Genetic variations in certain components of the glucocorticoid receptor (GR) chaperone complex have been associated with the development of stress-related affective disorders and individual variability in therapeutic responses to antidepressants. Mechanisms that link GR chaperoning and stress susceptibility are not well understood. Here, we show that the effects of glucocorticoid hormones on so...

متن کامل

Chaperoning steroid hormone signaling via reversible acetylation

Glucocorticoid receptor (GR) and related steroid hormone receptors are ligand-dependent transcription factors whose regulation is critical for both homeostasis and diseases. The structural maturation of the GR has been shown to require the Hsp90 molecular chaperone complex. Evidence indicates that Hsp90-dependent maturation is critical for GR ligand binding capacity and activity. While the role...

متن کامل

Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function.

Androgen receptor (AR) is a ligand-activated transcription factor belonging to the steroid hormone receptor family and is very important for the development and progression of prostate cancer. The soy isoflavone genistein has been shown previously to down-regulate AR in androgen-dependent prostate cancer cell lines such as LNCaP. However, the mechanism(s) by which AR is down-regulated by genist...

متن کامل

Histone deacetylase 6 gates the synaptic action of acute stress in prefrontal cortex.

The prefrontal cortex (PFC), a region responsible for high-order cognitive functions, such as decision-making, attention and working memory, is highly influenced by stress and corticosteroid stress hormones. Recently it has been shown that acute stress affects PFC functions by potentiating glutamatergic transmission via a mechanism dependent on glucocorticoid receptor (GR) and its downstream ta...

متن کامل

HDAC6 Regulates the Chaperone-Mediated Autophagy to Prevent Oxidative Damage in Injured Neurons after Experimental Spinal Cord Injury

Hypoxia-ischemia- (HI-) induced oxidative stress plays a role in secondary pathocellular processes of acute spinal cord injury (SCI) due to HI from many kinds of mechanical trauma. Increasing evidence suggests that the histone deacetylase-6 (HDAC6) plays an important role in cell homeostasis in both physiological and abnormal, stressful, pathological conditions. This paper found that inhibition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 18 5  شماره 

صفحات  -

تاریخ انتشار 2005